Niching Genetic Algorithms for Optimization in Electromagnetics II. Shape Optimization of Electrodes using the CSM
نویسنده
چکیده
In this paper, we present a new approach for automatic design of electrodes. The investigated method consists in identifying an optimal shape from an optimal equipotential resulting from a system of point charges. The electric field and potential are computed using the point charge simulation method. Niching genetic algorithms and constrained optimization techniques are applied to the electrode benchmark in order to find multiple optimal profiles. Index termsGenetic algorithms, niching, shape optimization, constrained optimization, penalty techniques, electrodes, charge simulation method.
منابع مشابه
Niching genetic algorithms for optimization in electromagnetics - I. Fundamentals
Niching methods extend genetic algorithms and permit the investigation of multiple optimal solutions in the search space. In this paper, we review and discuss various strategies of niching for optimization in electromagnetics. Traditional mathematical problems and an electromagnetic benchmark are solved using niching genetic algorithms to show their interest in real world optimization.
متن کاملFuzzy particle swarm optimization with nearest-better neighborhood for multimodal optimization
In the last decades, many efforts have been made to solve multimodal optimization problems using Particle Swarm Optimization (PSO). To produce good results, these PSO algorithms need to specify some niching parameters to define the local neighborhood. In this paper, our motivation is to propose the novel neighborhood structures that remove undesirable niching parameters without sacrificing perf...
متن کاملMulti-objective optimization of nanofluid flow in microchannel heat sinks with triangular ribs using CFD and genetic algorithms
Abstract In this paper, multi-objective optimization (MOO) of Al2O3-water nanofluid flow in microchannel heat sinks (MCHS) with triangular ribs is performed using Computational Fluid Dynamics (CFD) techniques and Non-dominated Sorting Genetic Algorithms (NSGA II). At first, nanofluid flow is solved numerically in various MCHS with triangular ribs using CFD techniques. Finally, the CFD data will...
متن کاملPareto Optimization of Two-element Wing Models with Morphing Flap Using Computational Fluid Dynamics, Grouped Method of Data handling Artificial Neural Networks and Genetic Algorithms
A multi-objective optimization (MOO) of two-element wing models with morphing flap by using computational fluid dynamics (CFD) techniques, artificial neural networks (ANN), and non-dominated sorting genetic algorithms (NSGA II), is performed in this paper. At first, the domain is solved numerically in various two-element wing models with morphing flap using CFD techniques and lift (L) and drag ...
متن کاملAERO-THERMODYNAMIC OPTIMIZATION OF TURBOPROP ENGINES USING MULTI-OBJECTIVE GENETIC ALGORITHMS
In this paper multi-objective genetic algorithms were employed for Pareto approach optimization of turboprop engines. The considered objective functions are used to maximize the specific thrust, propulsive efficiency, thermal efficiency, propeller efficiency and minimize the thrust specific fuel consumption. These objectives are usually conflicting with each other. The design variables consist ...
متن کامل